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Abstract

Whitebox fuzzing is a form of automatic dynamic test gen-
eration, based on symbolic execution and constraint solving,
designed for security testing of large applications. Unfortu-
nately, the current effectiveness of whitebox fuzzing is lim-
ited when testing applications with highly-structured inputs,
such as compilers and interpreters. These applications pro-
cess their inputs in stages, such as lexing, parsing and evalu-
ation. Due to the enormous number of control paths in early
processing stages, whitebox fuzzing rarely reaches parts of
the application beyond those first stages.
In this paper, we study how to enhance whitebox fuzzing

of complex structured-input applications with a grammar-
based specification of their valid inputs. We present a novel
dynamic test generation algorithm where symbolic execu-
tion directly generates grammar-based constraints whose
satisfiability is checked using a custom grammar-based con-
straint solver. We have implemented this algorithm and eval-
uated it on a large security-critical application, the JavaScript
interpreter of Internet Explorer 7 (IE7). Results of our ex-
periments show that grammar-based whitebox fuzzing ex-
plores deeper program paths and avoids dead-ends due to
non-parsable inputs. Compared to regular whitebox fuzzing,
grammar-based whitebox fuzzing increased coverage of the
code generation module of the IE7 JavaScript interpreter
from 53% to 81% while using three times fewer tests.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software En-
gineering]: Testing and Debugging; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning
about Programs

General Terms Verification, Algorithms, Reliability

Keywords Software Testing, Automatic Test Generation,
Grammars, Program Verification
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1. Introduction

Blackbox fuzzing is a form of testing, heavily used for finding
security vulnerabilities in software. It simply consists in ran-
domly modifying well-formed inputs and testing the result-
ing variants [3, 12]. Blackbox fuzzing sometimes uses gram-
mars to generate the well-formed inputs, as well as to encode
application-specific knowledge and test heuristics for guid-
ing the generation of input variants [1, 37].
A recently proposed alternative, whitebox fuzzing [16],

combines fuzz testing with dynamic test generation [6, 14].
Whitebox fuzzing executes the program under test with an
initial, well-formed input, both concretely and symbolically.
During the execution of conditional statements, symbolic
execution creates constraints on program inputs. Those con-
straints capture how the program uses its inputs, and satis-
fying assignments for the negation of each constraint define
new inputs that exercise different control paths. Whitebox
fuzzing repeats this process for the newly created inputs,
with the goal of exercising many different control paths of
the program under test and finding bugs as fast as possi-
ble using various search heuristics. In practice, the search is
usually incomplete because the number of feasible control
paths may be astronomical (even infinite) and because the
precision of symbolic execution, constraint generation and
solving is inherently limited. Nevertheless, whitebox fuzzing
has been shown to be very effective in finding new security
vulnerabilities in several applications.
Unfortunately, the current effectiveness of whitebox

fuzzing is limited when testing applications with highly-
structured inputs. Examples of such applications are com-
pilers and interpreters. These applications process their in-
puts in stages, such as lexing, parsing and evaluation. Due
to the enormous number of control paths in early process-
ing stages, whitebox fuzzing rarely reaches parts of the
application beyond these first stages. For instance, there
are many possible sequences of blank-spaces/tabs/carriage-
returns/etc. separating tokens in most structured languages,
each corresponding to a different control path in the lexer. In
addition to path explosion, symbolic execution itself may be
defeated already in the first processing stages. For instance,
lexers often detect language keywords by comparing their
pre-computed, hard-coded hash values with the hash values
of strings read from the input; this effectively prevents sym-
bolic execution and constraint solving from ever generating
input strings that match those keywords since hash functions
cannot be inversed (i.e., given a constraint x == hash(y)

and a value for x, one cannot compute a value for y that sat-
isfies this constraint).



1 // Reads and returns next token from file.

2 // Terminates on erroneous inputs.

3 Token nextToken(){

4 ...

5 readInputByte();

6 ...

7 }

8

9 // Parses the input file, returns parse tree.

10 // Terminates on erroneous inputs.

11 ParseTree parse(){

12 ...

13 Token t = nextToken();

14 ...

15 }

16

17 void main(){

18 ...

19 ParseTree t = parse();

20 ...

21 Bytecode code = codeGen(t);

22 ...

23 }

Figure 1. Sketch of an interpreter. The interpreter processes
the inputs in stages: lexer (function nextToken), parser
(function parse), and code generator (function codeGen).
Next, the interpreter executes the generated bytecode (omit-
ted here).

In this paper, we present grammar-based whitebox fuzzing,
which enhances whitebox fuzzing with a grammar-based
specification of valid inputs. We present a dynamic test gen-
eration algorithm where symbolic execution directly gen-
erates grammar-based constraints whose satisfiability is
checked using a custom grammar-based constraint solver.
The algorithm has two key components:

1. Generation of higher-level symbolic constraints, expressed
in terms of symbolic grammar tokens returned by the
lexer, instead of the traditional [6, 14, 16] symbolic bytes
read as input.

2. A custom constraint solver that solves constraints on
symbolic grammar tokens. The solver looks for solutions
that satisfy the constraints and are accepted by a given
(context-free) grammar.

Assuming the grammar accepts inputs only if they are
parsable, our algorithm never generates non-parsable in-
puts, i.e., it avoids dead-ends in the lexer and parser. More-
over, the grammar-based constraint solver can complete a
partial set of token constraints into a fully-defined valid in-
put, hence avoiding exploring many possible non-parsable
completions. By restricting the search space to valid inputs,
grammar-based whitebox fuzzing can exercise deeper paths,
and focus the search on the harder-to-test, deeper processing
stages.
We have implemented grammar-based whitebox fuzzing

and evaluated it on a large application, the JavaScript inter-
preter of the Internet Explorer 7 Web-browser. Results of ex-
periments show that grammar-based whitebox fuzzing out-
performs whitebox fuzzing, blackbox fuzzing and grammar-
based blackbox fuzzing in overall code coverage, while using
fewer tests.

Example. Consider the interpreter sketched in Figure 1 and
the JavaScript grammar partially defined in Figure 2. By
tracking the tokens returned by the lexer, i.e., the function
nextToken (line 3) in Figure 1, and considering those as
symbolic inputs, our dynamic test generation algorithm gen-

FunDecl F function id ( Formals ) FunBody
FunBody F { SrcElems }
SrcElems F ǫ

SrcElems F SrcElem SrcElems
Formals F id

Formals F id , Formals
SrcElem F . . .
. . .

Figure 2. Fragment of a context-free grammar for JavaScript.
Nonterminals have names starting with uppercase. Symbol ǫ
denotes the empty string. The starting nonterminal is Fun-
Decl.

erates constraints in terms of such tokens. For instance, run-
ning the interpreter on the valid input

function f(){ }

may correspond to the sequence of symbolic token con-
straints

token0 = function
token1 = id
token2 = (
token3 = )
token4 = {
token5 = }

Negating the fourth constraint in this path constraint leads
to the new sequence of constraints:

token0 = function
token1 = id
token2 = (
token3 , )

There are many ways to satisfy this constraints but most so-
lutions lead to non-parsable inputs. In contrast, our grammar-
based constraint solver can directly conclude that the only
way to satisfy this constraint while generating a valid input
according to the grammar is to set

token3 = id

and to complete the remainder of the input with, say,

token4 = )
token5 = {
token6 = }

Thus, the generated input that corresponds to this solution is

function f(id){ }

where id can be any identifier.
Similarly, the grammar-based constraint solver can imme-

diately prove that negating the third constraint in the previ-
ous path constraint, thus leading to the new path constraint

token0 = function
token1 = id
token2 , (

is unsolvable, i.e., there are no inputs that satisfy this con-
straint and are recognized by the grammar. Grammar-based
whitebox fuzzing prunes in one iteration the entire sub-
tree of lexer executions corresponding to all possible non-
parsable inputs matching this case.



2. Grammar-basedWhitebox Fuzzing

In this section, we recall the basic notions behind whitebox
fuzzing (Section 2.1) and introduce grammar-based white-
box fuzzing (Section 2.2). We then discuss how to check
grammar-based constraints for context-free grammars (Sec-
tion 2.3). Finally, we discuss additional aspects of our ap-
proach and some of its limitations (Section 2.4).

2.1 Whitebox Fuzzing

Algorithm 1 shows the whitebox fuzzing algorithm [16] (the
underlined text should be ignored for now). Given a sequen-
tial deterministic program P under test and an initial pro-
gram input I, this dynamic test generation algorithm gener-
ates new test inputs by negating constraints generated dur-
ing the symbolic execution of programPwith input I. These
new inputs exercise different execution paths in P. This pro-
cess is repeated and the algorithm executes the program
with new inputs multiple times—each newly generated in-
put may lead to the generation of additional inputs. The al-
gorithm terminates when a testing time budget expires or no
more inputs can be generated.
The algorithm starts by checking whether running pro-

gram P with input I triggers a runtime error (line 3). The
algorithm associates an attribute bound with each input, ini-
tially set to 0 (line 4), as an optimization that avoids generat-
ing the same path constraint multiple times. Variable worklist
represents a priority queue of inputs that have yet to be ex-
plored. The queue is initialized to a singleton containing the
initial input (line 6). The algorithm then enters an iterative
phase that continues as long as there are more inputs to ex-
plore, and as long as the time budget allows (line 7). As long
as this is the case, an input is taken out of the worklist (line 8).
Then, the program is executed symbolically on the input
(line 9). The result of symbolic execution (explained below) is
a path constraint, which is a conjunction of constraints on the
program’s input parameters, c1 ∧ . . .∧ cn, that are all satisfied
on the current execution path. The algorithm then creates
new test inputs by modifying the path constraint (lines 10–
16), as follows. For each prefix of the path constraint (longer
than the bound associated with the last input), the algorithm
negates the last conjunct (line 11). A solution, if it exists, to
such an alternative path constraint corresponds to an input
that will execute the program along the prefix of the origi-
nal execution path, but take the opposite branch of the condi-
tional statement corresponding to the last constraint in that
prefix (assuming symbolic execution and constraint solving
have perfect precision, otherwise the actual execution may
diverge from this path). The algorithm calls the constraint
solver to find a concrete input that satisfies the alternative
path constraint (line 12). If such a value exists (line 13), and
can be found by the constraint solver, this new test input is
run and checked (line 14), its bound is set to value i (line 15),
and it is added to the queue (line 16).
Symbolic execution, implemented in procedure

executeSymbolic in Algorithm 1, is a well established
technique [20]. Here we consider a particular form of
symbolic execution which is carried out dynamically, while
the program is running on a particular input. Dynamic
execution allows any imprecision in symbolic execution
to be alleviated using concrete values and randomization:
whenever symbolic execution does not know how to gen-
erate a constraint for a program statement depending on
some inputs, one can always simplify this constraint using
the concrete values of those inputs [14]. Symbolic execution
takes the program and the input and records how the

parameters: Program P, input I, grammar G

result : Bugs in P

Procedure grammarBasedWhiteboxFuzzing(P, I, G):1

bugs ≔ ∅2

bugs ≔ bugs ∪ Run&Check(P,I)3

I.bound ≔ 04

worklist ≔ emptyQueue()5

enqueue(worklist,I)6

while not empty(worklist) and not timeExpired() do7

input ≔ dequeue(worklist)8

c1 ∧ . . . ∧ cn ≔ executeSymbolic(P, input)9

for i ≔ input.bound,. . . ,n do10

pc ≔ c1 ∧ . . . ∧ ci−1 ∧ ¬ci11

newInput ≔ solve(pc,G)12

if newInput , ⊥ then13

bugs ≔ bugs ∪ Run&Check(P, newInput)14

newInput.bound ≔ i15

enqueue(worklist, newInput)16

return bugs17

Procedure executeSymbolic(P, I):18

path constraint pc ≔ true19

foreach instruction inst executed by P with I do20

update the symbolic store21

switch inst do22

case return from tokenization function23

mark token as symbolic variable24

case input-dependent conditional statement25

c ≔ expression for the executed branch26

pc ≔ pc ∧ c27

otherwise28

if false ∧ inst reads byte from I then29

mark input byte as symbolic variable;30

return pc31

Algorithm 1: Grammar-based whitebox fuzzing. Changes
from whitebox fuzzing are underlined. The auxiliary pro-
cedure executeSymbolic (lines 18–31) changes for grammar-
based fuzzing. Grammar-based whitebox fuzzing requires
the constraint solver (auxiliary procedure solve) to handle
grammar constraints (Algorithm 2).

program’s input affects the control flow in the program.
The result of symbolic execution is a path constraint that is
a logic formula that is satisfied by the currently executed
concrete input and any other concrete input that will drive
the program’s execution along the same control path. Sym-
bolic variables in the path constraint refer to bytes in the
program’s input. The algorithm keeps a symbolic store that
maps program variables to symbolic expressions composed
of symbolic variables and constants. The algorithm updates
the symbolic store whenever the programmanipulates input
data (line 21). At every conditional statement that involves
symbolic expressions, the algorithm extends the current path
constraint pc with an additional conjunct c that represents
the branch of the conditional statement taken in the current
execution (line 27). At every instruction that reads a byte
from the input, a symbolic variable is associated with the
input byte (line 30).



parameters: Path constraint pc, grammar Gwith start
symbol S

result : s ∈ L(pc) ∩ L(G) or ⊥

Procedure solve(pc, G):1

R≔ buildConstraint(pc)2

G′ ≔ G3

G′ ≔ duplicate productions for starting nonterminal S4

G′ ≔ rename S to S ′ (but not in the duplicated5

productions)
n ≔ highest index i of tokeni variable in R6

for i ≔ 1 . . . n do7

let ci denote the constraint in R on variable tokeni8

worklistW ≔ productions for S in G′9

while not empty(W) do10

prod ≔ dequeue(W)11

Si ≔ i
th symbol in prod.rhs12

if S i is nonterminal N then13

add copies of prod to W and G′, with Si14

expanded using all productions for N in G′

(unroll)
else15

remove prod from G′ if Si does not satisfy ci16

(prune)
if L(G′) = ∅ then17

return ⊥18

else19

return generate s from G′20

Algorithm 2: Procedure solve(pc,G) implements a
context-free constraint solver. The auxiliary function
buildConstraint(pc) converts the path constraint pc to a
regular expression. Notation prod.rhs denotes the right
hand side of the production prod.

2.2 Grammar-based Extension to Whitebox Fuzzing

Grammar-based whitebox fuzzing is an extension of the al-
gorithm in Section 2.1. The underlined text in Algorithm 1
contains the necessary changes.

• The new algorithm requires a grammar G that describes
valid program inputs (line 1).

• Instead of marking the bytes in program inputs as sym-
bolic (line 30), grammar-based whitebox fuzzing marks
tokens returned from a tokenization function such as
nextToken in Figure 1 as symbolic (line 24); thus grammar-
based whitebox fuzzing associates a symbolic variable
with each token1, and symbolic execution tracks the in-
fluence of the tokens on the control path taken by the
program P.

• The algorithmuses the grammarG to require that the new
input not only satisfies the alternative path constraint but
is also in the language accepted by the grammar (line 12).
As the examples in the introduction illustrate, this ad-
ditional requirement gives two advantages to grammar-
based whitebox fuzzing: it allows pruning of the search
tree corresponding to invalid inputs (i.e., inputs that are
not accepted by the grammar), and it allows the direct

1 Symbolic variables could also be associated with other values re-
turned by the tokenization function for specific types of tokens, such
as the string value associated with each identifier, the numerical
value associated with each number, etc.

completion of satisfiable token constraints into valid in-
puts.

2.3 Context-free Constraint Solver

The constraint solver invoked in line 12 of Algorithm 1 im-
plements the procedure solve and computes language inter-
section: it checks whether the language L(pc) of inputs satis-
fying the path constraint pc contains an input that is in the
language accepted by the grammar G. By construction, the
language L(pc) is always regular, as we discuss later in this
section. If G is context-free, then language intersection with
L(pc) is decidable. If G is context-sensitive, then a sound and
complete decision procedure for computing language inter-
section may not exist (but approximations are possible). In
what follows, we assume that G is context-free.
We assume that the set T of tokens that can be returned

by the tokenization function is finite. Therefore, all token
variables tokeni have a finite range T , and satisfiability of
any constraint on a finite set of token variables is decidable.
Given any such constraint pc, one can sort its set of token
variables tokeni by their index i, representing the total order
by which they have been created by the tokenization func-
tion, and build a regular expression (language) R represent-
ing L(pc) for that constraint pc.
A context-free constraint solver takes as inputs a context-free

grammar G and a regular expression R, and returns either a
string s ∈ L(G) ∩ L(R), or ⊥ if the intersection is empty.
Algorithm 2 presents a decision procedure for such a con-

straint solver. The algorithm exploits the fact that, by con-
struction, any regular language R always constrains only the
first n tokens returned by the tokenization function, where
n is the highest index i of a token variable tokeni appear-
ing in the constraint represented by R. The algorithm starts
by converting the path constraint into a regular expression
R (line 2). This is straightforward and involves grouping the
constraints in pc by the token variable index. The next 3 lines
(lines 3–5) are technical steps to eliminate recursion for the
start symbol S . The algorithm employs a simple unroll-and-
prune approach: in the ith iteration of the main loop (line 7),
the algorithm unrolls the right-hand sides of productions
to expose a 0 . . . i prefix of terminals (line 14), and prunes
those productions that violate the constraint ci on the i

th to-
ken variable tokeni in the regular expression R (line 16). Dur-
ing each round of unrolling and pruning, the algorithm uses
the worklist W to store productions that have not yet been
unrolled and examined for conformance with the regular ex-
pression.
After the unrolling and pruning, the algorithm checks

emptiness [18] of the resulting language L(G′) and gener-
ates a string s from the intersection grammar G′ (line 20).
For speed, our implementation uses a bottom-up strategy
that generates a string with the lowest derivation tree for
each nonterminal in the grammar, by combining the strings
from the right-hand sides of productions for nonterminals.
This strategy is fast due to memoizing strings during gen-
eration. Section 2.4 discusses alternatives and limitations of
Algorithm 2.

Solving example. We illustrate the algorithm on an exam-
ple, a simplified S-expression grammar. Starting with the ini-
tial grammar, the algorithm unrolls and prunes productions
given a regular path constraint. The grammar is (S is the start
symbol, nonterminals are uppercase)

S F (let ((id S)) S) | (Op S S) | num | id
Op F + | −



and the regular path constraint is

token1 ∈ {(}

token2 ∈ {+}

token3 ∈ {(}

token4 ∈ {(, ), num, id, let}

Before the main iteration (line 7), the grammar is:

S′ F (let ((id S′)) S′) | (Op S′ S′) | num | id
Op F + | −

S F (let ((id S′)) S′) | (Op S′ S′) | num | id

Next, the main iteration begins. The first conjunct in the
grammar constraint is token1 ∈ {(}, therefore the algorithm
(line 16) removes the last two productions from the grammar.
The result is the following grammar (execution is now back
at the top of the loop in line 7).

S′ F (let ((id S′)) S′) | (Op S′ S′) | num | id
Op F + | −

S F (let ((id S′)) S′) | (Op S′ S′)

In the next iteration of the for loop, the algorithm ex-
amines the second conjunct in the regular path constraint,
token2 ∈ {+}. The algorithm prunes the first production rule
from S since let does not match + (line 16), and then ex-
pands the nonterminal Op in the production SF (Op S′ S′)
(line 14). The production is replaced by two productions,
S F (+ S ′ S ′) and SF (− S′ S′), which are added to the work-
listW. The grammar G′ is then

S′ F (let ((id S′)) S′) | (Op S′ S′) | num | id
Op F + | −

S F (+ S′ S′) | (− S′ S′)

In the next iteration of the while loop, the second of the
new productions is removed from the grammar (line 16) be-
cause it violates the grammar constraint. After the removal,
the execution is now again at the top of the loop in line 7.

S′ F (let ((id S′)) S′) | (Op S′ S′) | num | id
Op F + | −

S F (+ S′ S′)

After 2 more iterations of the for loop, the algorithm ar-
rives at the final grammar

S′ F (let ((id S′)) S′) | (Op S′ S′) | num | id
Op F + | −

S F (+ (let ((id S′)) S′) S′)

As the last two steps, the algorithm checks that L(G′) , ∅
(line 17) and generates a string s from the final grammar
G′ for the intersection of G and R (line 20). Our bottom-
up strategy generates the string (+ (let (( id num )) num) num).
From this string of tokens, our tool generates a matching
string of input bytes by applying an application-specific de-
tokenization function.

2.4 Discussion and Limitations

Computing language intersection. Computing the intersec-
tion of a context-free grammar with a regular expression is
a well-known problem. A standard polynomial-time algo-
rithm consists in translating the grammar into a pushdown
automaton, translating the regular expression into a finite-
state automaton, computing the product of these two au-
tomata to obtain another pushdown automaton, and finally
translating the resulting pushdown automaton back into a
context-free grammar. Alternatively, the intersection can be
computed without the explicit automata conversion [39], by
an adaptation of the context-free reachability algorithm [27].

The unroll-and-prune algorithm we present in Section 2.3
is simpler because it does not go through an explicit push-
down automaton translation and exploits the structure of
the regular language that describes the path constraint on
only the first n tokens returned by the tokenization func-
tion, where n is the highest index i of a token variable tokeni
appearing in the constraint represented by R. This algo-
rithm is not polynomial in general, but performs satisfac-
torily in practice for small values of n (around 50–60). Also,
if the grammar is left-recursive, Algorithm 2 may not termi-
nate. However, context-free grammars for file formats and
programming languages are rarely left-recursive, and left-
recursion can be efficiently removed [29].

Approximate grammars. Grammar-basedwhitebox fuzzing
can be used with approximate grammars. Let us call an in-
put parsable if the parser successfully terminates when run on
that input. If the grammar accepts all parsable inputs or over-
approximates the set of parsable inputs, then Algorithm 1 is
sound: it does not prune any of the feasible paths for which
the parser successfully terminates.
In practice, the set of valid inputs specified by a gram-

mar is bound to be some approximation of the set of parsable
inputs. Indeed, parsers typically implement additional vali-
dation (e.g., simple type-checking) that is not part of a typ-
ical grammar description of the language. Other grammars
may have some “context-sensitive behaviors” (as in proto-
col description languages where a variable size parameter k
is followed by k records), that are omitted or approximated
in a context-free or regular manner. Other grammars, espe-
cially for network protocols, are simplified representations
of valid inputs, and do not require the full power of context-
sensitivity [4, 9, 31].

Domain knowledge. Grammar-based whitebox fuzzing re-
quires a limited amount of domain knowledge, namely the
formal grammar, identifying the tokenization function to be
instrumented, and providing a de-tokenization function to
generate input byte strings from input token strings gener-
ated by a context-free constraint solver. We believe this is not
a severe practical limitation. Indeed, grammars are typically
available for many input formats, and identifying the tok-
enization function is, in our experience, rather easy, even in
unknown code, provided that the source code is available or
that the tokenization functions has a standard name, such as
token, nextToken, scan, etc. For instance, we found the
tokenization function in the JavaScript interpreter of Internet
Explorer 7 in a matter of minutes, by looking for commonly
used names in the symbol table.

Lexer and parser bugs. Using a grammar to filter out invalid
inputs may reduce code coverage in the lexer and parser
themselves, since the grammar explicitly prevents the exe-
cution of code paths handling invalid inputs in those stages.
For testing those stages, traditional whitebox fuzzing can be
used. Moreover, our experiments (Section 3) indicate that
grammar-based whitebox fuzzing does not decrease cover-
age in the lexer or parser.
Grammar-based whitebox fuzzing approach uses the ac-

tual lexer and parser code of the program under test. In-
deed, removing these layers and using automatically gener-
ated software stubs simulating those parts may feed unreal-
istic inputs to the rest of the program.



3. Evaluation

We evaluate grammar-based whitebox fuzzing experimen-
tally and design experiments with the following goals:

• Compare grammar-based whitebox fuzzing to other ap-
proaches, grammar-less as well as blackbox. We compare
how the various test generation strategies performwith a
limited time budget and also examine their behavior over
long periods of time in Section 3.5.1.

• Measure whether test inputs generated by our technique
are effective in exercising deep execution paths in the
application, i.e., reaching beyond the lexer and parser.
Section 3.5.1 gives the relevant experimental results.

• Measure how the set of inputs generated by each tech-
nique compares. In particular, do inputs generated by
grammar-based whitebox fuzzing exercise the program
inways that other techniques do not? Section 3.5.2 presents
the results.

• Measure the effectiveness of token-level constraints in
preventing path explosion in the lexer. See Section 3.5.3
for the results.

• Measure the performance of the grammar constraint
solver of Section 2.3 with respect to the size of test inputs.
Section 3.5.4 discusses this point.

• Measure the effectiveness of the grammar-based ap-
proach in pruning the search tree. See Section 3.5.5.

The rest of this section describes our experiments and
discusses the results. Naturally, because they come from a
limited sample, these experimental results need to be taken
with caution. However, our evaluation is extensive and per-
formed with a large, widely-used JavaScript interpreter, a
representative “real-world” program.

3.1 Subject Program

We performed the experiments with the JavaScript inter-
preter embedded in the Internet Explorer 7 Web-browser.
Our experimental setup runs the interpreter with no source
modifications. The total size of the JavaScript interpreter
is 113562 machine instructions. In our experiments, we
also measure coverage in the lexer, parser and code gen-
erator modules of the interpreter. Their respective sizes
are 10410, 18535 and 3693 machine instructions. The code
generator is the “deepest” of the examined modules, i.e., ev-
ery input that reaches the code generator also reaches the
other two modules (but the converse does not hold). The
lexer and parser are equally deep, because the parser always
calls the lexer.
We use the official JavaScript grammar2. The grammar is

quite large: 189 productions, 82 terminals (tokens), and 102
nonterminals.

3.2 Test Generation Strategies

We evaluate the following test input generation strategies, to
compare them to grammar-based whitebox fuzzing.

blackbox generates test inputs by randomly modifying an
initial input. We use a Microsoft-internal widely-used
blackbox fuzzing tool.

grammar-based blackbox generates test inputs by creating
random strings from a given grammar. We use a strat-
egy that generates strings of a given length uniformly at

2 http://www.ecma-international.org

strategy seed random tokens
inputs

blackbox X X

grammar-based blackbox X X

whitebox X

whitebox+tokens X X

grammar-based whitebox X X

Figure 3. Test input generation strategies evaluated and
their characteristics. The seed inputs column indicates which
strategies require initial seed inputs from which to gener-
ate new inputs. The random column indicates which strate-
gies use randomization. The tokens column indicates which
strategies use the lexical specification (i.e., tokens) of the in-
put language. Each technique’s name indicates whether the
technique uses a grammar and whether is it whitebox or
blackbox.

random [26], i.e., each string of a given length is equally
likely.

whitebox generates test inputs using the whitebox fuzzing
algorithm of Section 2.1. We use an existing tool, named
SAGE, that implements this algorithm for x86 Windows
applications [16].

whitebox+tokens extends whitebox fuzzing with only the
lexical part of the grammar, i.e., marks token identifiers
as symbolic, instead of individual input bytes, but does
not use a grammar. This strategy was implemented as an
extension of SAGE.

grammar-based whitebox is the grammar-based whitebox
fuzzing algorithm of Section 2, which extends whitebox
fuzzing both using symbolic tokens and an input gram-
mar. This strategy was also implemented as an extension
of the SAGE tool.

Figure 3 tabulates the strategies used in the evaluation
and shows their characteristics.
Other strategies are conceivable. For example, whitebox

fuzzing could be combined directly with the grammar, with-
out tokens. Doing so requires transforming the grammar into
a scannerless grammar [33]. Another possible strategy is
bounded exhaustive enumeration [23, 36]. We have not in-
cluded the latter in our evaluation because, while all other
strategies we evaluated can be time-bounded (i.e., can be
stopped at any time), exhaustive enumeration up to some in-
put length is biased if terminated before completion, which
makes it hard to fairly compare to time-bounded techniques.

3.3 Methodology

To avoid bias when using test generation strategies that
require seed inputs (see Figure 3), we use 50 seed inputs
with 15 to 20 tokens generated randomly from the grammar.
Section 3.4 provides more information about selecting the
size of seed inputs. Also, to avoid bias across all strategies,
we run all experiments inside the same test harness.
The whitebox+tokens and grammar-based whitebox strate-

gies require identifying the tokenization function that creates
grammar tokens. Our implementation allows doing so in a
simple way, by overriding a single function.
For each of the examined modules (lexer, parser and code

generator), we measure the reachability rate, i.e., the percent-
age of inputs that execute at least one instruction of the mod-
ule. Deeper modules always have lower reachability rates.
We measure instruction coverage, i.e., the ratio of the

number of unique executed instructions to all instructions



size reach average maximum
(tokens) code gen. % coverage % coverage %
6 100 8.5 8.5
10 76.0 8.2 9.2
20 67.0 8.3 9.7
30 38.0 7.5 9.8
50 9.0 6.5 10.1
100 1.0 6.3 10.4
120 0.0 6.2 6.8
150 0.0 6.2 6.7
200 0.0 6.2 6.7

Figure 4. Coverage statistics for nine sets of 100 inputs
each, generated randomly from the JavaScript grammar us-
ing the same uniform generator as grammar-based blackbox.
The “reach code gen.” column displays the percentage of the
generated inputs that reach the code generator module. The
two right-most columns display the average and the maxi-
mum coverage of the whole interpreter for the generated in-
puts.

in the module of interest. This coverage metric seems the
most suitable for our needs, since we want to estimate the
bug-finding potential of the generated inputs, and blocks
with more instructions are more likely to contain bugs than
short blocks. In addition to the total instruction coverage for
the interpreter, we also measure coverage in the lexer, parser
and code generator modules.
We run each test input generation strategy for 2 hours.

The 2-hour time includes all experimental tasks: program ex-
ecution, symbolic execution (where applicable), constraint
solving (where applicable), generation of new inputs and
coverage measurements. To see whether giving more time
changes the results, we also let each strategy run much
longer, until instruction coverage does not increase during
the last 10 hours. See Section 3.5.1.
For reference, we also include coverage data and reach-

ability results obtained with a “manual” test suite, created
over several years by the developers and testers of this
JavaScript interpreter. The suite consists of more than 2,800
hand-crafted inputs that exercise the interpreter thoroughly.

3.4 Seed Size Selection

Four of our generation strategies require seed inputs (Fig-
ure 3). To avoid bias stemming from using arbitrary inputs,
we use inputs generated randomly from the JavaScript gram-
mar. The length of the seed inputs may influence subsequent
test input generation. To select the right length, we generate
inputs of different sizes and measure the coverage achieved
by each of those inputs as well as what percentage of inputs
reaches the code generator. For each length, we generate 100
inputs and perform the measurements only for those inputs.
Figure 4 presents the results.
The findings are not immediately intuitive: longer inputs

achieve, on average, lower total coverage. The reason is that
the official JavaScript grammar is only a partial specification
of what constitutes syntactic validity. The grammar describes
an over-approximation of the set of inputs acceptable by the
parser. Longer, randomly generated, inputs are more likely
to be accepted by the grammar and rejected by the parser.
For example, the grammar specifies that break statements
may occur anywhere in the function body, while the parser
enforces that break statements may appear only in loops
and switch statements. Enforcing this is possible by mod-
ifying the grammar but it would make the grammar much
larger. Another example of over-approximation concerns line

breaks and semicolons. The standard specifies that certain
semicolons may be omitted, as long as there are appropri-
ate line breaks in the file3. However, the grammar does not
enforce this requirement and allows omitting all semicolons.
By analyzing the results in Figure 4, we select 15 to 20

as the size range, in tokens, of the input seeds we use in
other experiments. This length makes the seed inputs vari-
able without sacrificing the penetration rate (i.e., reachability
of the code generation module).

3.5 Results

3.5.1 Coverage and Penetration

Figure 5 tabulates the coverage and reachability results for
the 2-hour runs with each of the five automated test gen-
eration strategies previously discussed. For comparison, re-
sults obtained with the manually-written test suite are also
included, even though running it requires more than 2 hours
(as those 2,820 input JavaScript programs are typically much
larger and takes more time to be processed).
Among all the automated test generation strategies con-

sidered, grammar-based whitebox achieves the best total cov-
erage as well as the best coverage in the deepest examined
module, the code generator. It achieves results that are clos-
est to the manual test suite, which predictably provides the
best coverage. The manual suite is diverse and extensive, but
was developed with the cost of many man-months of work.
In contrast, grammar-based whitebox requires minimal human
effort, and quickly generates relatively good test inputs.
We can also observe the following.

• Grammar-based whitebox fuzzing achieves much better
coverage than regular whitebox fuzzing.

• Grammar-based whitebox fuzzing performs also signifi-
cantly better than grammar-based blackbox. Even though
the latter strategy achieved good coverage in the code
generator, whitebox strategies outperform blackbox ones
in total coverage.

• Grammar-based whitebox fuzzing achieves the highest cov-
erage using the fewest inputs, whichmeans that this strat-
egy generates inputs of higher quality. Generating few,
high-quality test inputs is important for regression test-
ing.

• The blackbox and whitebox strategies achieved similar re-
sults in all categories. This shows that, when testing appli-
cations with highly-structured inputs in a limited amount
of time (2 hours), whitebox fuzzing, with the power of
symbolic execution, does not improve much over sim-
ple blackbox fuzzing. In fact, in the code generator, those
grammar-less strategies do not improve coverage much
above the initial set of seed inputs.

• Reachability results show that almost all tested inputs
reach the lexer. A few inputs generated by the blackbox
and whitebox strategies contains invalid, e.g., non-ASCII,
characters and the interpreter rejects them before using
the lexer. To exercise the interpreter well, inputs must
reach the deepest module, the code generator. The results
show that grammar-based whitebox has the highest percent-
age of such deep-reaching inputs.

To analyze the long generation-time behavior of the exam-
ined strategies, we let each strategy run for as long as it keeps
covering new instructions at least every 10 hours. The results

3 See Section 7.9 of the specification: http://interglacial.
com/javascript spec/a-7.html#a-7.9



strategy inputs total lexer parser code generator
coverage % reach % coverage % reach % coverage % reach % coverage %

blackbox 8658 14.2 99.6 24.6 99.6 24.8 17.6 52.1
grammar-based blackbox 7837 11.9 100 22.1 100 24.1 72.2 61.2
whitebox 6883 14.7 99.2 25.8 99.2 28.8 16.5 53.5
whitebox+tokens 3086 16.4 100 35.4 100 39.2 15.5 53.0
grammar-based whitebox 2378 20.0 100 24.8 100 42.4 80.7 81.5
seed inputs 50 10.6 100 18.4 100 20.6 66.0 50.9
manual test suite 2820 58.8 100 62.1 100 76.4 100 91.6

Figure 5. Coverage results for 2-hour runs. The seed inputs row lists statistics for the 50 seed inputs used by some of the test
generation strategies (see Sections 3.3 and 3.4). The manual test suite takes more than 2 hours to run and is included here for
reference. The “inputs” column gives the number of inputs tested by each strategy . The “total coverage” column gives the total
instruction coverage percentage. Coverage statistics for lexer, parser and code generatormodules are given in the corresponding
columns. The “reach” columns give the percentage of inputs that reach the module’s entry-point.

strategy S only S S and GBW only GBW
blackbox 4.9 62.5 32.6
grammar-based blackbox 2.2 56.2 41.6
whitebox 7.2 61.3 31.5
whitebox+tokens 10.9 62.0 27.1

Figure 6. Relative coverage in % compared to grammar-based
whitebox (GBW). The column “only S ” gives the total number
of instructions covered by each strategy but not by GBW. The
column “S and GBW” gives the total number of instructions
covered by both strategies. The last column gives the total of
instructions covered by “only GBW”.

are that, after the initial 2 hours, each configuration reaches
around 90% of coverage that it is eventually capable of reach-
ing (this validates our selection of the 2-hour time limit for
our experiments.) The long generation-time runs confirm the
findings of the 2-hour runs: grammar-based whitebox fuzzing
is the most effective of the examined techniques, as it reaches
the highest coverage and keeps discovering new code for the
longest than the other techniques (97 hours for grammar-based
whitebox vs. 84 hours for whitebox and 82 hours for grammar-
based blackbox).
In summary, the results of these experiments validate our

claim that grammar-based whitebox fuzzing is effective in
reaching deeper into the tested application and exercising the
code more thoroughly than other automated test generation
strategies.

3.5.2 Relative Coverage

Figure 6 compares the instructions covered with grammar-
based whitebox fuzzing and the other analyzed strategies. The
numbers show that the inputs generated by grammar-based
whitebox cover most of the instructions covered by the inputs
generated by the other strategies (see the small numbers in
the column “only S ”), while covering many other instruc-
tions (see the large numbers in the column “only GBW”).
Combined with the results of Section 3.5.1, this shows

that grammar-based whitebox fuzzing achieves the highest to-
tal coverage, highest reachability rate and coverage in the
deepest module, while using the smallest number of inputs.
In other words, grammar-based whitebox creates tests inputs of
the highest quality among the analyzed strategies.

3.5.3 Statistics on Symbolic Executions

Figure 7 presents various statistics related to the symbolic
executions performed during the 2 hours runs of each of the
three whitebox strategies evaluated. We make the following
observations.

• All three whitebox strategies perform roughly the same
number of symbolic executions.

• However, the whitebox strategy creates a larger average
number of symbolic variables because it operates on char-
acters, while the other two strategies work on tokens
(cf. Figure 3).

• The whitebox+tokens strategy creates the smallest average
number of symbolic variables per execution. This is be-
cause whitebox+tokens generates many unparsable inputs
(cf. Figure 5), which the parser rejects early and therefore
no symbolic variables are created for the tokens after the
parse error.

Figure 7 also shows how constraint creation is distributed
among the lexer, parser and code generator modules of the
JavaScript interpreter. The two token-based strategies (white-
box+tokens and grammar-based whitebox) generate no con-
straints in the lexer. This helps avoiding path explosion in
that module. Those strategies do explore the lexer (indeed,
Figure 5 shows high coverage) but they do not get lost in its
error-handling paths.
All strategies create constraints in the deepest, code gen-

erator, module. However, there are few such constraints be-
cause the parser transforms the stream of tokens into an Ab-
stract Syntax Tree (AST) and subsequent code, like the code
generator, operates on the AST. When processing the AST in
later stages, symbolic variables associated with input bytes
or tokens are largely absent, so symbolic execution does not
create constraints from code branches in these stages. The
number of symbolic constraints in those deeper stages could
be increased by associating symbolic variables with other
values returned by the tokenization function such as string
and integer values associated with some tokens.

3.5.4 Context-Free Constraint Solver Performance

To measure the performance of the grammar constraint
solver, we repeated the 2-hour grammar-based whitebox run 9
times with different sizes of seed inputs (between 10 and 200
tokens). The average number of solver calls per symbolic
execution was between 23 and 53 (with no obvious corre-
lation between seed input size and the average number of
solver calls). The results are that up to 58% of total execution
time was spent in the constraint solver (with no obvious cor-
relation between seed size and solving time). Such solving
times are typical in dynamic test generation (e.g., a recent
report [15] indicates up to 62% of the test generation time
spent in the constraint solver).



strategy created constraints % symbolic average number of average number of
lexer parser code gen. executions symbolic variables constraints

whitebox 66.6 33.1 0.3 131 57.1 297.7
whitebox+tokens 0.0 98.0 2.0 170 11.8 66.9
grammar-based whitebox 0.0 98.0 2.0 143 21.1 113.0

Figure 7. Symbolic execution statistics for 2-hour runs of whitebox strategies. The “created constraints” columns shows the
percentages of all symbolic constraints created in the three analyzed modules of the JavaScript interpreter. The “symbolic
executions” column gives the total number of symbolic executions during each run. The two right-most columns give the
average number of symbolic variables per symbolic execution and the average number of symbolic constraints per symbolic
execution.

3.5.5 Grammar-based Search Tree Pruning

Grammar-based whitebox fuzzing is effective in pruning the
search tree. In our 2-hour experiments, 29.0% of grammar
constraints are unsatisfiable. When a grammar constraint is
unsatisfiable, the corresponding search tree is pruned be-
cause there is no input that satisfies the constraint and is
valid according to the grammar.

4. Related Work

Systematic dynamic test generation [6, 14] is becoming in-
creasingly popular [2, 16, 34] because it finds bugs without
generating false alarms and requires no domain knowledge.
Our work enhances dynamic test generation by taking ad-
vantage of a formal grammar representing valid inputs, thus
helping the generation of test inputs that penetrate the appli-
cation deeper.
Miller’s pioneering fuzzing tool [28] generated streams of

random bytes, but most popular fuzzers today support some
form of grammar representation, e.g., SPIKE4, Peach5, File-
Fuzz6, Autodafé7. Sutton et al. present a survey of fuzzing
techniques and tools [37]. Work on grammar-based test input
generation started in the 1970’s [17, 32] and can be broadly
divided into random [8, 24, 25, 35] and exhaustive genera-
tion [21, 23]. Imperative generation [7, 10, 30] is a related ap-
proach in which a custom-made program generates the in-
puts (in effect, the program encodes the grammar). In sys-
tematic approaches, test inputs are created from a specifica-
tion, given either a special piece of code (e.g., Korat [5]) or
a logic formula (e.g., TestEra [19]). Grammar-based test in-
put generation is an example of model-based testing (see Ut-
ting et al. for a survey [38]), which focuses on covering the
specification (model) when generating test inputs to check
conformance of the program with respect to the model. Our
work also uses formal grammars as specifications. However,
in contrast to blackbox approaches, our approach analyses
the code of the program under test and derives new test in-
puts from it.
Path explosion in systematic dynamic test generation can

be alleviated by performing test generation composition-
ally [13], by testing functions systematically in isolation, en-
coding and memoizing test results as function summaries
using function input preconditions and output postcondi-
tions, and re-using such summaries when testing higher-
level functions. A grammar can be viewed as a special form
of user-provided compact “summary” for the entire lexer/-
parser, that may include over-approximations. Computing
such a finite-size summary automatically may be impossible

4 http://www.immunitysec.com/resources-freesoftware.shtml

5 http://peachfuzz.sourceforge.net/

6 http://labs.idefense.com/software/fuzzing.php

7 http://autodafe.sourceforge.net

due to infinitely many paths or limited symbolic reasoning
capability when analyzing the lexer/parser. Grammar-based
whitebox fuzzing and test summaries are complementary
techniques which could be used simultaneously.
Another approach to path explosion consists of abstract-

ing lower-level functions using software stubs, marking their
return values as symbolic, and then refining these abstrac-
tions to eliminate unfeasible program paths [22]. In contrast,
grammar-based whitebox fuzzing is always grounded in
concrete executions, and thus does not require the expensive
step of removing unfeasible paths.
Emmi et al. [11] extend systematic testing with constraints

that describe the state of the data for database applications.
Our approach also solves path and data constraints simulta-
neously, but ours is designed for compilers and interpreters
instead of database applications.
Majumdar and Xu’s recent and independent work [23]

is closest to ours. These authors combine grammar-based
blackbox fuzzing with dynamic test generation by exhaus-
tively pre-generating strings from the grammar (up to a
given length), and then performing dynamic test genera-
tion starting from those pre-generated strings, treating only
variable names, number literals etc. as symbolic. Exhaustive
generation inhibits scalability of this approach beyond very
short inputs. Also, the exhaustive grammar-based genera-
tion and the whitebox dynamic test generation parts do not
interact with each other in Majumdar and Xu’s framework.
In contrast, our grammar-based whitebox fuzzing approach
is more powerful as it exploits the grammar for solving con-
straints generated during symbolic execution to generate in-
put variants that are guaranteed to be valid.

5. Conclusion

We introduced grammar-based whitebox fuzzing to enhance
the effectiveness of dynamic test input generation for appli-
cations with complex, highly-structured inputs, such as in-
terpreters and compilers. Grammar-based whitebox fuzzing
tightly integrates constraint-based whitebox testing with
grammar-based blackbox testing, and leverages the strengths
of both.
As shown by our in-depth study with the IE7 JavaScript

interpreter, grammar-based whitebox fuzzing generates
higher-quality tests that exercise more code in the deeper,
harder-to-test layers of the application under test (see Fig-
ure 5). In our experiments, grammar-basedwhitebox fuzzing
strongly outperformed both whitebox fuzzing and blackbox
fuzzing. Code generator coverage improved from 61% to
81% and deep reachability improved from 72% to 80%. Deep
parts of the application are the hardest to test automatically
and our technique shows how to address this.
Since grammars are bound to be partial specifications of

valid inputs, grammar-based blackbox approaches are fun-
damentally limited. Thanks to whitebox dynamic test gener-



ation, some of this incompleteness can be recovered, which
explains why grammar-based whitebox fuzzing also out-
performed grammar-based blackbox fuzzing in our exper-
iments.
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